# CARBOHYDRATES: INTRODUCTION

For B.Sc. Semester V

### Carbohydrates

#### Carbohydrates

- are produced by photosynthesis in plants.
- such as glucose are synthesized in plants from CO<sub>2</sub>, H<sub>2</sub>O, and energy from the sun.
- are oxidized in living cells to produce CO<sub>2</sub>, H<sub>2</sub>O, and energy.



- Carbohydrates are sugars and provide energy when consumed.
- Our bodies break down carbohydrates to extract energy. Carbon dioxide and water are released in the process.
- Glucose is the primary carbohydrate our bodies use to produce energy.
- Carbohydrates are classified as biomolecules.

- •Carbohydrates are broadly defined as hydrates of carbon as the number of hydrogen and oxygen atoms present is in the ratio of 2:1, like water.
- •General formula C<sub>x</sub>(H<sub>2</sub>O)<sub>y</sub>
- Functional groups present include hydroxy groups and carbonyl group (aldehyde or ketone)
- Carbohydrates are therefore also defined as polyhydroxides of aldehydes/ ketones or their derivatives or substances that yield one of these compounds.

- •Simple carbohydrates are known as sugars or saccharides and their name ends with –ose.
- •For example:
- •Glucose- sugar present in our blood
- •Fructose- sugar present in fruits
- •Sucrose- table sugar
- •Lactose- sugar found in milk

Classification of carbohydrates on basis of nature: Sugars and non-sugars

SUGARS

 Simple carbohydrates are referred to as simple sugars and are often sweet to the taste.

Examples: glucose, fructose, maltose, sucrose

**NON-SUGARS** 

- They are non-sweet
  - Complex carbohydrates include starches and the plant and wood fibers known as cellulose.

# Classification on the basis of number of products formed on hydrolysis



#### Classification and nomenclature of monosaccharides

Monosaccharides are the simplest carbohydrates that cannot be hydrolysed. They are classified in the following 2 ways

Based on type of carbonyl group present: aldose or ketose



Based on number of carbon atoms present: triose, tetrose, pentose, hexose



- Aldotetrose: threose, erythrose
- Aldopentose: ribose, arabinose, xylose
- Aldohexose: glucose, mannose, galactose
- Ketohexose: fructose





Oligosaccharides contain 2-10 monosaccharide molecules, which are liberated on hydrolysis. Based on number of monosaccharide units they are further classified as Disaccharides, Trisaccharides, etc.

| C <sub>12</sub> H <sub>22</sub> O <sub>11</sub><br>Sucrose | + | H <sub>2</sub> O | $\xrightarrow[or Invertase]{H^+} \begin{array}{c} C_6H_{12}O_6 \\ \hline Glucose \end{array} \begin{array}{c} + & C_6H_{12}O_6 \\ \hline Fructose \end{array}$       |
|------------------------------------------------------------|---|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C <sub>12</sub> H <sub>22</sub> O <sub>11</sub><br>Maltose | ÷ | H <sub>2</sub> O | $\xrightarrow[or Maltase]{H^+} C_6H_{12}O_6 + C_6H_{12}O_6$ Glucose Glucose Glucose                                                                                  |
| C <sub>12</sub> H <sub>22</sub> O <sub>11</sub><br>Lactose | + | H <sub>2</sub> O | $\xrightarrow[]{H^+}{\text{or Lactase}} \begin{array}{c} C_6H_{12}O_6 \\ \hline Glucose \end{array} \begin{array}{c} + & C_6H_{12}O_6 \\ \hline Glucose \end{array}$ |

Raffinose  $C_{18}H_{32}O_{16}$  glucose+ fructose +galactose

#### III. Polysaccharides

Polysaccharides are polymers of monosaccharide unit They have high molecular weight(up to a million) They are usually tasteless(non-sugars) and form colloids with water Polysaccharides are two types **homopolysaccharides** and **heteropolysaccharides** 

$$(C_6H_{10}O_5)_n \longrightarrow n C_6H_{12}O_6$$

Eg. Starch, cellulose, glycogen

#### Stereochemistry

#### ISOMERISM

compounds that have the same chemical formula but different structures are called isomers. e.g. fructose, glucose, mannose, and galactose are isomers of each other having formula  $C_6H_{12}O_6$ 

✓ Structural isomerism

✓ Stereoisomerism

### **STRUCTURAL ISOMERISM**

✓ Same molecular formula but differ from each other by having different structures.

| сно       | CH <sub>2</sub> OH |
|-----------|--------------------|
| н-с-он    | c=o                |
| но-с-н    | но-с-н             |
| н-с-он    | н-с-он             |
| н-с-он    | н-с-он             |
| сн₂он     | CH2OH              |
| D-Glucose | D-Fructose         |





## **DANDLISOMERISM**

D and L isomers are mirror images of each other. The orientation of –H and –OH group on the penultimate carbon atom(C5) determines whether the sugar is D or L isomers.





 Epimerism is the stereoisomerism if two monosaccharides differ from each other in their configuration around a single specific carbon(other than anomeric) atom.

